Package: Metrics 0.1.4

Metrics: Evaluation Metrics for Machine Learning

An implementation of evaluation metrics in R that are commonly used in supervised machine learning. It implements metrics for regression, time series, binary classification, classification, and information retrieval problems. It has zero dependencies and a consistent, simple interface for all functions.

Authors:Ben Hamner [aut, cph], Michael Frasco [aut, cre], Erin LeDell [ctb]

Metrics_0.1.4.tar.gz
Metrics_0.1.4.zip(r-4.5)Metrics_0.1.4.zip(r-4.4)Metrics_0.1.4.zip(r-4.3)
Metrics_0.1.4.tgz(r-4.4-any)Metrics_0.1.4.tgz(r-4.3-any)
Metrics_0.1.4.tar.gz(r-4.5-noble)Metrics_0.1.4.tar.gz(r-4.4-noble)
Metrics_0.1.4.tgz(r-4.4-emscripten)Metrics_0.1.4.tgz(r-4.3-emscripten)
Metrics.pdf |Metrics.html
Metrics/json (API)

# Install 'Metrics' in R:
install.packages('Metrics', repos = c('https://mfrasco.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mfrasco/metrics/issues

On CRAN:

33 exports 100 stars 12.97 score 0 dependencies 51 dependents 56 mentions 5.6k scripts 21.7k downloads

Last updated 5 years agofrom:ca12765d3e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 10 2024
R-4.5-winOKOct 10 2024
R-4.5-linuxOKOct 10 2024
R-4.4-winOKOct 10 2024
R-4.4-macOKOct 10 2024
R-4.3-winOKOct 10 2024
R-4.3-macOKOct 10 2024

Exports:accuracyaeapeapkaucbiasceexplained_variationf1fbeta_scorelllogLossmaemapemapkmasemdaeMeanQuadraticWeightedKappamsemslepercent_biasprecisionraerecallrmsermslerrserseScoreQuadraticWeightedKappaseslesmapesse

Dependencies: